16
May
08

The Cladding of Porter House, New York City

Porter House

In Manhattan’s meatpacking district, an existing warehouse needed an extra 15,000 square feet for a housing addition. The job was done by Sharples Holden Pasquarelli (SHoP) who, as described in the Computing Technologies section of Architectural Graphic Standards, 11th Edition came up with a “custom-designed, laser-etched zinc metal wall panel cladding system…The condominium’s zinc rainscreen emerges from a family of 15 profile types, from which there are 150 versions of profiles, yielding 4000 total panels.”

The variations were achieved by cutting and bending each profile type of panel differently. After four initial drawings, the rest of the communication between SHoP and the fabricators was carried out electronically.

This case study is presented in order to explore the use of software by SHoP in design, construction, and fabrication. It entailed a lot of originality, all of it concentrated in the few-inches-deep cladding system, with the other parts of the project achieved more conventionally. Part of the reason for this concentration on the outer layer was to astonish the eye, because making a visual impact was a priority. The creators were going for an ambiance of complexity and randomness, to fit in with the existing environment. This aim was also achieved by offset from the underlying warehouse. The addition looks like it grew there.

The use of building information modeling achieved huge gains in fabrication and installation time, accuracy in the production of the varying panel elements, and efficiency of material use. The builders were able to get the most bang for the buck out of standard zinc sheets of 39″ by 118″, by careful planning of how the various sized pieces would be obtained, cutting waste to the bone. They started with several basic shapes: flat panel, bent sill panel, window panel, light box panel, and more.

To deal with the numerous idiosyncratic factors that needed to be taken into consideration, ShoP used the 3D NURBS program Rhinoceros, which told them what shape to make each piece in order to meet the technical requirements of a rainscreen. Enthusiasts describe Rhino as very simple and powerful, able to do all levels of design for any discipline, and blessed with a high degree of interoperability. The program is said to be especially popular in Europe.

Rhino describes itself as having the capability to do uninhibited free-form 3-D modeling with extreme precision. It can create, edit, analyze, document, render, animate and translate NURBS curves, surfaces and solids, handle polygon meshes and point clouds, and support a wide variety of 3-D digitizing arms, 3-D scanners, and 3-D printers. It can handle large projects, and has the additional advantages of relative ease in learning and relative affordability. It can, in short, do everything but sing lullabies to the kids in a finished building’s daycare center.

After Rhino had done its bit for ShoP and the Porter House, everything was transferred to a program called Solidworks to fine-tune the 150 different panel shapes. For a short description of Solidworks, we turn to Architectural Graphic Standards, 11th Edition, which says on page 937:

Solidworks is most commonly used by mechanical engineers, industrial engineers, and product designers. By building “solid models” of objects (as opposed to surface models), engineers can perform finite material and structural analyses on objects, as well as communicate more seamlessly with CAM equipment, which often operates on proprietary software that more easily reads solid models.

Please feel free to share experiences other projects have had with Rhinoceros and Solidworks.

SOURCE: ” Computing Technologies ” 2007
photo courtesy of b.frahm , used under this Creative Commons license

Advertisements

0 Responses to “The Cladding of Porter House, New York City”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: