Archive for the 'Building Information Modeling' Category

30
Jun
08

Louisiana Architect Trey Trahan

It’s always enlightening to examine one particular architect’s methods and ways of thought, which Liz Martin has done in a substantial interview with Trey Trahan FAIA of Baton Rouge, Louisiana. This comparatively young professional has found himself in the news lately as a person who bears watching — in the best possible way, of course. When asked by the interviewer if he finds a particular project inspirational, he moves the conversation to a different plane by talking about his grandfather, who impressed on him the idea that we’re not just here to suit ourselves, but to help others whenever possible. Trahan says,

My grandfather was a humble and extraordinary person that started with very little and worked very hard, and he did it with such dignity….He was a simple and quiet man that spoke only when he had something to say, but was terribly genuine. It’s the characteristics that I think great architecture possesses.

Trahan was also strongly influenced by the words of Le Corbusier, whose declaration that “creation is a patient search” grounds his philosophy. Trahan summarizes the process:

You learn a little; you work really hard. You learn a little more and then you work harder.

He talks about how easy it is to be taken in by an idea that seems, at first, to be the one, only, and inspired solution. Often, on closer examination, the perfect answer turns out to be more sizzle than steak, and the conscientious creator needs to start over again by re-stating the basics: the program, the uniqueness of the place, the cultural influences at work, and of course the client. Then, more study and testing. To be real and right, architecture has to satisfy on all levels. Simplicity is an important value. In general he feels that most of our lives are impeded by too much clutter.

When asked about how being a Louisiana native has affected his life as an architect, he is enthusiastic about the rich diversity of the area in terms of its population. His firm is working against the perception of Louisiana being something of a backwater where innovation doesn’t show up. He thinks it possible that the state can move into the creative forefront in architecture as well as in other areas.

Trahan describes himself as excited by new materials and processes, and at the same time willing to go back to old materials, for example in the design of Holy Rosary Catholic Church Complex where an elegant solution was found in the combination of an old material with a new process. The needs of the project led to the study of an old, primitive form of concrete called bousillage.

When the original bid for the construction turned out to be more than twice the budget, the firm turned to the new technology of building information modeling and created 3D computer files which a milling company used to produce the cypress boards that form the building. This brought the cost back within range, with the additional benefit of using a material whose interplay with light is very satisfying to the architect and many other who admire the building – including more than 30 magazine editors who included stories about it in their publications.

This project also offered a great opportunity for intensive collaboration, which Trahan sees as very important. Before the Holy Rosary project started, he hosted a day-long meeting with all the contractors and sub-contractors where he impressed upon them the importance of their work not only as handlers of physical construction components, but as artists whose contributions were essential to the aesthetic result.

Perhaps the most socially significant role played by his firm was the renovation of the Superdome after Hurricane Katrina. This was by many as a vital step in recovery for the whole state of Louisiana, in terms of morale, because it symbolized the rebirth of the city of New Orleans and pointed toward the return of normalcy. Even though the building is not “his” in any sense, Trahan calls this project the most fulfilling experience in his career up to this point.

More recently, the firm has gained media attention as one of those chosen to work on the Make It Right! project, for the rebuilding of the Lower 9th Ward in New Orleans, which has become well-known through the participation of actor Brad Pitt.

SOURCE: ” Trey Trahan Defining Local Architecture at a Variety of Scales” 06/03/08
photo courtesy of raybdbomb , used under this Creative Commons license

27
Jun
08

BIM Revolution Not Quite Here Yet

An interesting article in The Economist suggests that the revolution in BIM (Building Information Modeling) is, at least for the present, mainly wishful thinking. By and large,

… fancy graphics tend to be used only for conceptual purposes and play no role in the detailed design and construction of the finished structure. For the most part, this is still carried out with old-fashioned two-dimensional elevation and plan drawings, created by hand or using computer-aided design (CAD) software. “It’s still a 2-D profession,” says Shane Burger, an associate architect at Grimshaw…

With CAD, you draw your picture, and the software makes it malleable, so it can be changed, added to, combined with another. With BIM, you put in the facts of the case and tell the software what you need, and it draws the picture. It seems that many practitioners are still in a CAD headspace, unable to make the leap of imagination that would really put BIM to work for them.

When the client says, “How will it look from over there?”, the elegant and stunning pictorial answer can be shown, and that’s cool. But there’s so much more to BIM than dazzling graphics. The amazing virtual walk-through is negligible compared to the real power and beauty of BIM. The thing to keep in mind is that a building information model is a digital representation of both the physicals and functional characteristics.

Traditionally, one of the embarrassing possibilities, once construction starts, is discovering that a basic law of physics is being violated, as two things, such as an air duct and a beam, try to occupy the same space at the same time. In building information modeling, the word “information” is there for a reason – because the best part of BIM is the huge database of everything you could possibly want to know about every part of the building at all times. Like the weather or any other system, a building is subject to the so-called “butterfly effect.” Tweak something over here, and something over there is affected. With BIM,

the model is based on objects, which are solid shapes or voids with their own properties. The model also includes information about the relationships between these objects, so that when one object is changed… any related objects are automatically updated.

In a large project, the number of stakeholders can grow to monstrous proportions, and BIM keeps them all on the same page. Time is an added dimension, so processes can be followed through the life cycle of the building. All the stages of design, construction, and facility management are taken into account and automatically updated. Energy use, lighting, heat flow, acoustics, and many other factors can all be kept track of. The most important thing is the sharing of resources and information across platforms and environments.

The author points out that the early adapters are the more flamboyant, high-name-recognition architects. Because their creations are so complicated and unusual, there’s really no other choice. What’s needed is BIM across the board; it needs to be a plow horse as well as a show pony. Apparently this is happening, as the General Services Administration now requires BIM technology for all the projects it funds.

Of course, accurate cost estimation is a huge incentive, now more than ever. When the digital prototype is the main reference, it’s possible to calculate very finely the quantities of materials needed. Perhaps even more important, every detail necessary for compliance with regulations is spelled out. MIT professor William Mitchell estimates that inconsistencies and clashes can eat up from 2 to 5% of a budget. This is interesting, because that’s about the same percentage range as it costs to make a really good green building. So, thanks to BIM, it seems that a building could be made greener (costing 3% more) and smarter (saving 3%) and still end up with about the same price tag, when all’s said and done. With the cost of energy and materials going up, and the cost of information going down, it looks like the BIM revolution will go forward.

Pictured: the Eden Project, in England. The geodesic domes were BIM-designed.

SOURCE: ” From blueprint to database ” 06/05/08
photo courtesy of just_laze , used under this Creative Commons license

25
Jun
08

BIMStorm Coming to Your City?

Los Angeles

BIM is of course Building Information Modeling, and here’s how it became a storm. In Cadalyst, Kenneth Wong reports on how 133 participants tested a hunk of technology called OPS, short for Onuma Planning System, also known as a “Web-based BIM collaboration platform.” And what a platform it is. In virtual attendance from Japan, the Netherlands, the Philippines, Canada, Mexico and the U.S., this group took on the challenge of re-inventing 60 square blocks of Los Angeles. They answered the question of what would happen if, as Wong puts it,

…a bunch of idealistic architects, designers, building owners, contractors, and consultants decided to do away with the professional hierarchies, business protocols, and legal constraints that have long prevented them from working together? What if they converged on a destination and simply spent the day exchanging ideas about the high-rises, hospitals, firehouses, and schools they envision building there?

BIMStorm LA, as the event was officially dubbed, was the brainstorm of Pasadena architect Kimon Onuma. It was a case of technology in search of an application, the technology being Saas, or software-as-a-service, which was developed by Onuma’s company and named OPS. We’re talking about open, interoperable data standards, meaning the players could come in with ArchiCAD, Autodesk Revit, VectorWorks, or any number of other programs that operate under Industry Foundation Classes (IFC) standards.

This was the super-stoked collaboration track, nicknamed the Woodstock of BIM, because the idea behind it was to shake loose from the old ways and throw everybody together into one big sandbox to be as playful and inventive as they wanted — not only architects and engineers, but code reviewers, specialists in Leed certification, green consultants, and structural analysts. After a 24-hour Internet session, conducted in real time with no lag, 420 virtual buildings had been created over 54,755,153 square feet of territory.

One enthusiastic participant was analyst Karen Weber, who specializes in green roofs. Although energy-modeling BIM software is fully aware of solar panels, it doesn’t seem to have caught up with the concept of green roofs, to Weber’s regret. She’s excited about hybrid roofs — the combination of green plantings with solar panels. Roofs get hot, as hot as 200 degrees, and she’d like to see those solar panels, which function best in the high 70s, to have plants for company, to cool them off. The green roof not only looks nice, but saves, she says, lots of money over the life of the building because of several factors.

How will all these green roofs be watered? Weber has a plan for that, too. The area of the architects’ and planners’ imaginary playground would contain around 300 fire hydrants. Their annual flushing wastes millions of gallons of water, which she would like to see gathered, stored in cisterns, and sent up to the green roofs. And why not? Cities are certainly crying out for ways to do many things better, including the conservation of resources.

Another participant, Jeffrey Ouellette of VectorWorks, said,

It’s a really interesting exercise. You can find out relatively quickly how feasible it is to build two 20-story buildings instead of a single 40-story building on a site very early in the design process. A lot of architects struggle with that early design stage because they need to get the feedback, the data, that really matters, in a timely fashion.

Going by the evidence of BimStorm’s own website it appears to have designs on several more cities. One comment notes that the old ways have been proven to cause a built-in wastage of 30% of the professionals’ time and energy before construction on a project even begins. People are liking this idea of real-time collaboration that can bring problems to light before they even become problems. One even proposes the radical idea that, in many cases, the best solution would be not to build.

Comments from BIMStorm participants verge on sounding like religious conversion or falling in love — this thing is rocking their world, and they want more. Urged ahead by the visionary Onuma, they want the future to come faster, which will happen when everybody in the industry gets on board this thing.

SOURCE: ” The Summer of BIM ” 04/01/08
photo courtesy of olasisucsd , used under this Creative Commons license

18
Jun
08

The Inevitability of Building Information Modeling

Ronda Bridge visualization

“Don’t send a boy to do a man’s job,” the old saying goes. That’s the gist of John Tobin’s plea for universal adoption and fullest possible use of Building Information Modeling (BIM). Tobin’s career has focused on 3D technologies. Now the principal architect at EYP Architecture & Engineering PC, he has also taught at Rensselaer School of Architecture.

His message is to not rely on the same old convention of two-dimensional drawings to visualize a project when there is a so much better tool at hand. And likewise, don’t send a man to do a boy’s job. Don’t think of BIM as just a fancier way to produce two-dimensional drawings. It’s a whole new world. Tobin says, “We would be better served to look beyond using BIM merely as a more powerful representation tool, and instead to treat the models we create as proto-buildings.”

A BIM model is the first iteration of a building, Tobin says, a true prototype, because proto means first. Once BIM gets its hands on a project and is used properly, what you get is less like a picture of a building, and more like a building. What you get is virtual construction.

Like anything else in life, the full realization of the BIM promise depends on attitude, the willingness to learn, change, co-operate, and share. New ways of thinking are called for. For instance, Tobin says:

After working with BIM for several years, many architects find themselves modeling in ways that don’t necessarily make sense if 2D representation is the end-goal.… A segment of the architecture profession is moving beyond representation, and embracing a proto-construction mentality, carefully but inevitably.

Tobin suggests that contractors have a head start on architects when it comes to adaptability, and discusses the options for interoperability, including the National BIM Standard (NBIMS), about which he is optimistic. He breaks down the chronology of BIM history into generations, and, along with the great examples and many illustrations, this is really why it’s worth reading the original article:

BIM 1.0 – CAD on Steroids, but still doing the traditional representation.
BIM 2.0 – The Big Bang in Reverse – this has to do with solving the design/build dichotomy. Now we get into the 4th dimension, which is time, and the 5th, which is money. Then came analyses of energy and environment, and the drive for interoperability, all wrapped up in a steep learning curve.
BIM 3.0 – Post-Interoperability: This era is in its infancy, and the quicker we help it grow up, the better. Just think of the advantage: Unlike any architects or builders in history, we can build a thing twice (or as many times as it takes) without the dreary agony of tearing down masonry or pulling out wrongly placed components. We get an infinite number of do-overs, without the sweat. What’s not to like?

Wiley’s BIM Handbook is just what’s needed to get up to speed on this vital topic. It includes everything you’d want to know about BIM, and case studies, too; a universe of information in a very accessible format, starting off with a chapter called “BIM Tools and Parametric Modeling Interoperability.” Other chapters approach BIM from the viewpoints of the architect, engineer, owner, facility manager, builder, subcontractor, fabricator, and family dog (just kidding.)

The visualization of Ronda Bridge, at the top of the page, was tagged by its creator with the labels Autocad and Maya.

SOURCE: ” Proto-Building: To BIM is to Build ” 05/28/08
photo courtesy of Ziuth2008, used under this Creative Commons license

10
Jun
08

Awards from American Institute of Architects, San Francisco

In ArchitectureWeek, Brian Libby reports on the awards handed out by the San Francisco chapter of the American Institute of Architects. Of particular interest is the Urban Design category, in which Skidmore, Owings & Merrill (SOM) received a merit award for the immense project known as Beijing Finance Street.

Located in a historic district close to the city center and the Forbidden City, the plan is organized around a Central Park as well as a series of interior courtyards based on the traditional Chinese Hatong neighborhoods that were largely wiped out by past urban renewal but have regained favor as the nation re-embraces its past heritage.

Beijing Finance Street encompasses eight square blocks or 860,000 square meters of office buildings, hotels, and retail stores including a huge glass-roofed shopping mall. There are also more than 300 apartments and numerous small parks. Each of the 18 buildings has three parking levels underneath. It’s a district that never sleeps, but the hotels and housing units are located near the central park to take advantage of the quieter atmosphere there, while office buildings are on the edges.

The firm of Skidmore, Owings & Merrill can do pretty much anything, including the most high-tech projects that clients can dream up. In Architectural Graphic Standards, 11th Edition, we see another example of their work, this time for the Kings County Hospital Center in Brooklyn, New York, with special attention to how they designed the vault for the Diagnostic & Treatment Facility Linear Accelerator (page 667.)

Not all AIA chapters do so, but the San Francisco chapter has a whole category for energy and sustainablilty. The honor awards in that category were captured by the Orinda City Hall (Siegel & Strain Architects), and by the Nueva School Hillside Learning Complex (Leddy Maytum Stacy Architects.) This latter project was also recently named one of the top ten green projects of 2008 by the AIA Committee on the Environment. Additionally, the Lawrence Berkeley National Laboratory’s Molecular Foundry (SmithGroup) won the only merit award in this category.

Four Honor awards for excellence were given. One recipient was the firm Brand + Allen Architects, for 185 Post Street, a restoration project with innovative aspects that worked with the protective laws guarding the early 20th century origins of the historic building. Morphosis and SmithGroup shared credit for the San Francisco Federal Building, whose double skin and tall thin shape help it to overreach the energy code’s requirements. Also recognized for excellence were Stanley Saitowitz/Natoma Architects, for Bridge House, and Fougeron Architecture, for Tehama Grasshopper.

Tehama Grasshopper is a remodeled warehouse located in San Francisco, which has been converted to offices and residences, and it also has received more than one award, having been honored earlier this year by the national AIA for its interior architecture.

Again, unlike some other local chapters, AIA San Francisco has established an awards category for interior architecture, which this year recognized three projects: a temple, a restaurant, and a residence.

Interestingly, there is even an “unbuilt design” category, for which the honoree was IwamotoScott Architecture for Hydro-Net: City of the future, a vision of San Francisco a hundred years from now. Building information modeling (BIM) helped The Design Partnership snag an honor award for the remodel of a University of California pathology lab in which costs and construction time were greatly reduced through use of the BIM technology.

The Panhandle Bandshell (pictured) received an urban design honor award, which just might be the coolest one of the bunch. This functional piece of sculpture is now located at Treasure Island, an artificial island that is part of San Francisco, where students and other low-income residents live. Among other reclaimed components, the bandshell was constructed from 65 automobile hoods and 3,000 plastic water bottles.

SOURCE: “San Francisco AIA Awards 2008″05/28/08
photo courtesy of MikeLove, used under this Creative Commons license

04
Jun
08

CAD Caveats from a Developer-Contractor

Photoshop and Autodesk Maya

T.K. Garrison, author of Cracks, Sags, and Dimwits – Lessons to Build On, also maintains a website with some great articles on it, for instance this one called “Slaughtered in the Dirt.” Two friends in the industry are swapping tales of professional misery, and the subject of their woes is dirt. On any building site, it’s expensive to handle, especially when you have to do it more than once. One guy advises the other:

You’re usually dollars ahead paying for a topo survey up front and then having your architect check dirt quantities as she designs. Not only does this minimize dirt work, it also helps ensure driveways and lawns aren’t too steep and that the site drains properly.

Like so many other aspects of a project, working the dirt right is the responsibility of humans who can be devastatingly fallible, whether through lack of training or lack of caring. It comes to the same thing in the end — a badly flawed project, in this case a road the engineer put in the wrong place without consulting the dirt.

Though Garrison’s piece is about computer-assisted design (CAD), it applies equally to Building Information Modeling (BIM). It’s funny and, unfortunately, all too true. There’s a strong warning here against the assumption that a lot of pricey software and few buzz words can add up to a technologically competent architectural firm. Training and commitment matter, and so do versatility, and adaptability, and so do machines and programs that can work together harmoniously. As one of Garrison’s characters says,

There are two types of CAD operators… The thinking kind are worth their weight in gold. The I-only-push-buttons-for-a-living-don’t-ask-me-to-think variety are far more common… They can be successful, but only if the boss spends LOTS of time reviewing and correcting their work…. He’s so busy bringing in new jobs, trying to get paid, and training new employees, there’s no time left to manage and maintain the people actually doing his day-to-day workload.

Architectural Graphic Standards, 11th Edition contains a whole chapter on “Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM)” which defines the design technologies associated with the field as ranging from simple two-dimensional drawing programs to the more inclusive and complicated 3D programs that do solid parametric modeling. It’s basically any digital environment where a desired shape is first designed, then interpreted, producing directions that control the actions of a machine tool. While unquestionably unequalled when it comes to laying out and cutting out parts, the further reaches of computer-aided design can create ambivalence in its human users,

As Dan Hanganu points out, the ability to make beautiful pictures alone isn’t enough, and can conceal shortfalls in other areas. He says, “The technology has taken off and there is a generation of people in our offices who know how to manipulate the machine. But the machine has the seductive ability to hide the lack of depth and essential knowledge of the user.” Newly fledged architect Zoe Berman notes in her blog, “For a while, we seemed to forget that the computer can only ever be a tool that we direct, and is not a tool to direct us. CAD creates a veil of perception that can distance us from the realities of a project.” Many voices remind us that technology alone can never replace human intelligence, and even the best tool is only as good as the mind that directs and interprets its activities.

SOURCE: ” Slaughtered In the Dirt – Part 1: Bad CAD” 06/02/08
photo courtesy of ovendelon , used under this Creative Commons license

03
Jun
08

A High-Performance Building in Texas

UT Nursing

The School of Nursing and Student Community Center at the University of Texas in Houston (pictured) was chosen as an AGS case study for several reasons, according to a very explicit piece by Rives Taylor in Architectural Graphic Standards, 11th Edition. Ambitious high-performance goals were set and met. It began with a holistic approach to design and planning:

These building strategies were developed through a highly defined and premeditated process in a one-year period before design started. A collective team of experts undertook this year of intensive research, seeking the best existing research methods, design, and operational practices to direct the realization of this facility.

One of the greenest things about the School of Nursing is what happened even before the first step toward its creation. The site had previously been occupied by a research building, which was deconstructed so conscientiously that 80% of its materials were reclaimed for recycling and eventual further use.

Building Information Modeling techniques were used to formulate an initial plan, which was then, with the aid of the software, changed and adjusted along the way. BIM helped with the validation of recycled content, the balancing of CO2, and assessment of the buildings life cycle, and in other areas as well. For instance, in the matter of lighting:

The team refined their intuitive ideas using energy and daylight modeling tools with the Lawrence Berkeley National Labs… Actual lighting levels for the alternative design schemes were simulated through a yearly cycle. The measurements were then compared and decisions were made to follow specific strategies based on light quality, quantity, energy performance, costs, and other criteria.

Maximum lighting effectiveness was achieved through a combination of several different solutions including windows, four skylighted atria, sun shading devices, and artificial lighting. Daylighting is characterized here as one of the most simple and powerful strategies, because it doesn’t require a trained operations staff in order to work effectively.

Some recycled materials were used, for instance the multi-layered insulation. All materials were closely scrutinized with an eye to their low volatile organic compound (VOC) content. Once set in place, these of course also continue to perform without further human intervention. For greater energy efficiency, HVAC (heating, ventilation and air conditioning) equipment was installed with a combination of some undersized elements (pumps and fans) and some over-sized ones (ducts and pipes). Ventilation is treated separately from cooling, and a localized instantaneous hot water delivery system is the solution preferred over the traditional central hot water source. The double-paned window glass is spectrally selective.

Five tanks collect rainwater which, combined with condensation from the cooling system, provide greywater for the low-flow toilets and other uses, while potable water is to be found only in drinking fountains, sinks and showers.

The first two floors contain facilities used by the whole student body: bookstore, auditorium, café, and student services offices. The third and fourth floors are dedicated to the academic needs of the nursing school: classrooms and other learning environments. Then there is a research lab floor, topped by three stories containing offices for faculty and administration, and conference rooms. The service building is a separate structure.

The School of Nursing’s four elevations and its roof were conceived as five unique facades, each a distinct entity, and the detail with which Taylor describes the individual design approaches to the conditions and requirements on the various sides, is the highlight of this chapter.

SOURCE: “University of Texas School of Nursing and Student Community Center” AGS page 495 2007
photo courtesy of JoeBehrPalmSprings , used under this Creative Commons license

30
May
08

The Role of Building Information Modeling in Cleantech

The Majestic Fool

While public awareness of ecological problems focuses on the transportation industry, many people are not quite accustomed to regarding construction as an area where green technology can make a huge difference. But new methods are changing the design, construction and operation of buildings and facilities more every day. This is emphasized by Scott Boutwell in a TriplePundit.com piece, where he says,

The building & facility industry is undergoing radical change today, as owners are demanding more project visibility, improved risk management (scheduling & costs); and increased use of technologies that will allow for less waste, more efficient energy consumption, and ultimately lower costs over the lifecycle of the facility (from design and construction to operations).

This change is due to Building Information Modeling (BIM), which is exponentially different from 2-dimensional computer-assisted design. Boutwell tells why:

This knowledge or database contains the ‘intelligent objects” of a structure; not just lines and arcs typically associated with traditional CAD or drawing tools. As such, BIM can represent multiple, dynamic, and collaborative views of information such as spatial data (3D), un-structured data (text), and structured data (databases, spreadsheets), as well as new views including scheduling and cost information (termed ‘4D’ and ‘5D’, respectively).

The visualization capabilities of BIM are of a different order of magnitude, allowing for much more in the way of collaboration in the early stages and throughout the gestation and birth of a structure, but that’s only the beginning. The technology’s innate intelligence and especially its ability to simulate events and processes are what really make a difference. In the area of energy and resources, like water management and re-use, it has never been so easy to design with conservation in mind. All the various elements that make up the heating, ventilation and air conditioning system can be tested and improved before one pipe is laid. The impact of alternative energy sources such as wind can be factored in. Energy analysis predicts how all the parts will work together and how their synergy can be enhanced, advancing also the health and comfort of the building’s eventual inhabitants.

The results of using various kinds of insulation, windows, and structural components can be played with, trying out different combinations until the optimal energy-efficient result is reached. The virtual management of materials allows for a formerly undreamed-of degree of efficiency and a significant reduction in waste. Along with being earth-friendly, this kind of analysis is also budget-friendly. The impact of a building upon the world around it, in terms of carbon, water, and other elemental substances, can be predicted and adjusted before mistakes are made on a large, expensive scale.

The management of risk is a subject dear to the heart of every architect, builder, developer, attorney, accountant, and insurance underwriter – aside from the purely altruistic safety considerations put in place for the public good. When the goal is to meet the U.S. Green Buildings Council standards for Leadership in Energy and Environmental Design (LEED) certification, building information modeling keeps the project on track every step of the way.

Boutwell calls the adoption of BIM technology as a green tool “rapid but uneven” across the industry. He cites the Green Index Study, conducted in 2007 by the American Institute of Architects and Autodesk. The findings are that 44% of the responding architects are currently using some form of BIM. But, at this point, the definition is not quite pinned down. He quotes Buddy Cleveland, an Applied Research expert at Bentley Systems, who says, “People are defining BIM as whatever they want it to be.” What does it mean for a firm to say it utilizes BIM technology? Does it have a full team headed by a BIM manager? Has it bought the software but not quite gotten it installed yet? Does the firm make full use of BIM technology in the back office, while not yet incorporating this green-friendly approach into its marketing strategy?

In architecture, engineering, and construction, there are cultural factors to overcome before the concept of BIM as the royal road to greenness is fully accepted. There are training issues, and adjustments that must be made in traditional business processes. For owners, operators, contractors, engineers, and architects, ultimately the widespread adoption of BIM spells win-win-win-win-win.

SOURCE: ” Building Information Modeling and the Adoption of Green Technologies ” 05/22/08
photo courtesy of The Majestic Fool , used under this Creative Commons license

28
May
08

The Importance of the BIM Manager in a Firm

ArchiCAD

A veteran of Autodesk and Intergraph, and now President and CEO at Graphisoft, Dominic Gallello recently contributed an article to AECbytes outlining the reasons why he sees the BIM Manager as a vital figure on the staff of any architectural firm. Graphisoft is of course the home of ArchiCAD, one of the most respected design software tools for architects. One of Gallello’s concerns is that Building Information Modeling tools are perceived as all-powerful and self-managing, when actually there is a very real need for human supervision. He says:

Is there a difference between a CAD Manager and a BIM Manager? Yes! …While a CAD Manager would have focused on layering standards and plotting issues, the BIM manager must determine how models from consulting engineers are coordinated with the architectural model, who owns which geometry, who references geometry, how the parts are integrated, and at what interval they will be synchronized and checked for conflicts.

Gallello explains that a CAD Manager is trained to think linearly and, while that is not a bad thing, a BIM Manager thinks of the whole project at once, all the time, rather than step by step. This is because all the building data are interconnected in such a way that when one thing changes, every other area changes too. Standards need to be kept in place and adhered to globally.

BIM management calls for multi-disciplinary thinking, and the person who’s doing it is an integral member of the project team, not just a supporter and provider of tools used by others. BIM methodology encompasses structural and HVAC design, energy analysis, and many more specialties and ties them all together in a smoothly integrated way.

In Architectural Graphic Standards, 11th Edition, there is an excellent chapter on Building Information Modeling, in the Computing Technologies section. It begins with a starkly basic definition:

A data model in any given domain describes the attributes of the entities in that domain, as well as how these entities are related to each other.

What does it take to be a competent BIM Manager? Gallello hits several points, starting with an understanding of all the various project workflows, and a grasp of the needs of the various needs of the delivery team members including architects, engineers, contractors and estimators. Of course the BIM manager needs complete technical know-how, along with a number of “soft” skills such as training, coaching, and communicating – especially when it comes to making all the team members aware of exactly how much benefit is in it for them.

The person holding this position should also be prepared to travel anywhere, any time, to meet the needs of a company with far-flung branches. And she or he must have a cool head that lends the ability to make good decisions in time of crisis.

Understandably, a firm that has previously only had experience with CAD Managers might not want to rush right out and hire the first BIM Manager who comes whistling down the road. Gallello suggests a measured approach, and recommends hiring an independent consultant, and then maybe another consultant for the next project, until the company gets a feel for what this person is, and what she or he should be doing.

Another thing he recommends is for an architect who is familiar with and enthusiastic about BIM technology to be teamed with others who are not so familiar, so the confidence can rub off. He calls this an “inoculation process” that a firm will probably go through before settling comfortably into the newly-formed universe and bringing a permanent BIM manager onto the staff.

It would be mighty interesting to hear from anyone who has made the career change from CAD Manager to BIM Manager. How goes it?

SOURCE: ” The New “Must Have”-The BIM Manager ” 01/17/08
photo courtesy of rucativava , used under this Creative Commons license

20
May
08

Virtual Reality for the Architect

Keystone Bouchard

Here we have an architect, Jon Brouchoud, a large part of whose practice exists in cyberspace. The Arch website is one of his outlets, and we’re looking at a transcript titled “Visualising Design Concepts in a Virtual Environment” in which Brouchoud talks about the virtual 3-D world Second Life, which now has 7 million registered users.

On the physical plane, there is a Madison, Wisconsin, office run by an architect with a biography, and a family, and other normal-sounding accoutrements. But this architect lives simultaneously in a material world and a virtual one. When he was introduced to Second Life (SL), Brouchoud was practicing green residential design. He built some houses in SL, and immediately grasped the importance of what could evolve into real life (RL) applications:

I knew this medium had potential when I noticed several other avatars walking around inside the houses. Someone even started decorating the interior with their own furniture…We could use it to have meetings with long distance clients, and actually walk through schematic design ideas in a more immersive and engaging way than sending 2D pdf drawings via email…

Brouchoud spent some months polishing his skills with the virtual world’s software, and soon began to invite RL clients to experience his creations. He says it’s easy to build rough models, and with a little more work, the client can try out different building materials, different colors of paint, furniture arrangements and so on. They can be taken on a walk-through and experience how the doors open and close. They can plant trees in the right places and see how they look from the dining room window.

After the initial buildings were up, someone even came along to offer constructive criticism. Brouchoud sees this as one of the under-appreciated advantages of building in Second Life. Not only clients, but fellow professionals who know what they’re talking about can provide feedback to a newly-introduced design project. The Hilton Hotel chain built a full-scale hotel and listened to advice that actually caused design revisions, before taking the idea out into RL. Many other exciting things go on in Second Life, such as controversy over whether it is “fair use” to copy a Frank Lloyd Wright building in the virtual world.

At the time of the broadcast from which this transcript was taken, it wasn’t possible to build outside, for instance with CAD or BIM software, and then import the result into Second Life. In-world, buildings are made with objects called “prims” which is short for primitive. Brouchoud promises, however, that it’s well worth the extra work. He recommends a blog called “Virtual Suburbia” as an aid to getting up to speed with the necessary skill set. There’s a fair amount of technical information in this transcript, too.

Inside Second Life, Brouchoud owns land and rents some of it out to other professionals in the field on Architecture Island. Some of the resulting creativity is purely experimental, while other architects, like Brouchoud himself, build pragmatic structures and invite clients to tour them, with an eye to duplicating them in RL. Then there’s a communally-designed Wikitecture experiment. Brouchoud urges architects to be “thought leaders” in a new way of doing things, saying,

This kind of environment is exploding in popularity and I think architects ought to be taking it seriously – and considering how virtual spaces might augment or compliment the real life buildings they’re designing…I think we need a new language for virtual architecture… in a sense, its the ultimate in sustainable design.

SOURCE: ” Visualising Design Concepts in a Virtual Environment ” 06/19/07
photo courtesy of MysteryBee , used under this Creative Commons license




Archives