Posts Tagged ‘Concrete

02
Jul
08

AGS Case Study: West Side Skate Park, Albuquerque

Who would have thought such an exquisite degree of planning could go into a skate park? The project undertaken by Morrow Reardon Wilkinson Miller (MRWM) certainly proves that collaboration with the widest possible team can pay off in terms of the wow factor. In the Building Sitework chapter of Architectural Graphic Standards, 11th Edition, Gregg Miller relates every step in the creation of this large-scale in-ground skate park. Here’s the overview:

The majority of the basic elements of the skate park utilize standard construction details and methods. The unique aspect of this project is the modification, application, and combination with these elements that makes them more “skate-able.” …. The arrangement, spacing, and connection of elements was resolved and refined in concert with the grading design. Through this process, the majority of the schematic design remained intact. Modifications were made to establish grades to acceptable slopes and to provide better internal circulation.

Now, what exactly are these elements? They are all standard concrete applications, either flat, sloped, or vertical, but it’s the imaginative way they’re put together that makes this park such a treat. They’re combined into features such as volcanoes, which are transitioned ledges with flat tops, and pyramids, which are multi-banked structures. There’s a thing called a sofa, which is a notch running laterally in a bank, and another called a loveseat, which is a protrusion at a bank’s corner. Since skaters like to jump over things, they have vertical separations and horizontal gaps to jump over.

Everything is grouped into two main areas, a section called the Trenches, mostly made from cast-in-place concrete around a central plaza of brick. This is described as a liner-flow area, replete with walls, banks, ledges, gaps, rails and steps. Separated from the Trenches by a grassy area is the Dogbone, a feature combining three bowls with a ¾ pipe. These bowls are from 8 to 11 feet deep, made to resemble the backyard swimming pools where many skaters learned their trade. The brick area pays homage to the University of New Mexico’s brick plazas, and the Trenches to the city’s system of drainage arroyos. Another part is modeled after a supremely skateable California bridge.

This illustration from Architectural Graphic Standards (from page 726) gives some idea of the meticulous planning that went into this unique recreational facility.

Miller goes into great detail describing the composition and formation of the various parts. The concrete paving, for instance, has to withstand not only skateboards but trucks, in the Trenches area, because they have to get in there for maintenance. So some of the concrete flatwork is six inches thick, reinforced by steel. The four different kinds of joints are enumerated and described: expansion joints, cold joints, cold-keyed joints, and control joints. The concrete retaining walls are of course not just walls, but skateable elements also, and vary from 8″ to 24″ in thickness, while part of the retaining wall is an aggregation of granite boulders with two-thirds of their bulk above ground. Both banks and ledges are composed of numerous variations on a theme, with different heights, widths, lengths, slopes, and connections.

The success of the project is attributed to the expertise of the consultants, namely, professional skateboard maestros who are usually on tour displaying their skills. All their ideas for exciting features were pulled together by an architect into a site plan. MRWM’s implementation of the plan started off with 3-D modeling, and at each step, everything was checked again with the experts who had envisioned the plan. Some changes and improvements were made along the way, but the park essentially came into reality matching the initial dream.

SOURCE: “West Side Skate Park” 2007
photo courtesy of striatic , used under this Creative Commons license

11
Jun
08

Bird’s Nest, Water Cube, and More in Beijing

Olympic Stadium, Beijing

In only two short months, the Beijing Olympics will take place, and a very interesting article by Paul Goldberger in The New Yorker gives us a tour of some of the major structures created for the event. He begins by reflecting on the architectural layout of the whole city in relation to the 2,800-acre Olympic Green. Back in 2002, 96 architects competed for the honor of mapping out the master plan. Sasaki Associates of Boston became the decider, and Goldberger explains the significance of the placement of the National Stadium and the National Aquatic Center. Here’s how the author describes the National Stadium (pictured):

The concrete wall of the arena is wrapped with a latticework exterior of crisscrossing columns and beams, a tangle of twisting steel twigs. The lattice arcs upward and inward over the stadium’s seats, supporting a translucent roof and forming an oculus around the track. The building may look like a huge steel sculpture, but most of the beams are structural, not decorative…. The outer wall of the concrete structure is painted bright red…and when lit up at night it shines through the latticework, an enormous red egg glowing inside its nest.

It’s not difficult to see why the enormous building is informally called the Bird’s Nest. It was designed by two Swiss architects, Jacques Herzog and Pierre de Meuron, and built by a crew that totaled as many as 9,000 workers at a time. For the Olympics, the stadium will seat 91,000 guests. Afterward, many tiers of seats will be removed and the capacity brought down to 80,000 for the remainder of the building’s life as China’s national stadium.

Just as startlingly original, in a different way, is the appearance of the National Aquatics Center, or Water Cube, designed by PTW Architects, an Australian firm. The bubbly exterior is a cladding formed from cells of a plastic called ethylene tetrafluoroethylene. Goldberger explains the wonders of ETFE, as the substance is familiarly known. It transmits light better than glass and only weighs 1/100th as much as glass, plus it has better insulating properties than glass. This remarkable exterior treatment was developed with the help of Arup, an engineering firm. For the Olympics, the Water Cube will seat 17,000, but when the games are over, nearly 2/3rds of the upper tiers will be removed and multipurpose rooms will take their place.

Goldberger lyrically describes the surreal experience of being inside the Water Cube, and speculates on the motives behind the Chinese bringing in international architects for the most prominent structures. There are 31 structures in all, and most of the ones designed by native architects are not particularly noteworthy, except for Digital Beijing, the control center, whose four slicey sections remind some observers of the internal parts of a computer. Its designer, Pei Zhu, received his education at the University of California.

Goldberger also takes a retrospective look at previous Olympic venues in cities around the world, explaining why they were the way they were. In recent decades there has been a strong tendency for the host cities to use the Olympics as a catalyst for extensive urban renewal, going far beyond the requirements of the games themselves. Barcelona redeveloped its entire waterfront. London is gearing up in a big way for 2012, with a $19 billion plan for the East End, which has traditionally been the low-rent part of town.

Many people are not sure what to make of Beijing’s Olympic preparations. The subway system has been upgraded and extended, and there’s plenty of cosmetic touching-up, with trees planted and roadways tidied, but there is a feeling in some quarters that it’s largely an optical illusion, composed of more façade than substance – as Goldberger puts it, “driven by image, not by sensitive urban planning.” His question, and one worth asking, is, “Beijing’s Olympic architecture is spectacular, but what message does it send?”

SOURCE: ” Out of the Blocks ” 06/02/08
photo courtesy of borkur.net , used under this Creative Commons license