Posts Tagged ‘green

03
Jul
08

The Green Wave of the Future is on Top

Greg Callaghan is as enthusiastic as all-get-out about green skins, and it’s easy to see why. “Living” buildings accomplish the feat of being greener than green. The many benefits include better air in the immediate area, plus an overall reduction of harmful gases released into the atmosphere in general; insulation against cold, heat and noise; and a way to utilize water which would otherwise pour down the drain or possibly even cause flooding. Callaghan says,

Green is the right word to describe the flora-embracing features now being incorporated into new and old buildings across the US, Europe and parts of Asia. We’re talking garden rooftops, multi-levelled terraced gardens, lush foliage draping exterior walls and vast, internal, Babylonian hanging gardens.

Of course every instance is different, depending on location, budget, whether the building is new or already existing, whether the installation is hydroponics-based or soil-based, and many other factors. But in general, the green roof consists of a multi-level sandwich, starting with the structural support. Then come the vapor control layer, thermal insulation layer, support panel, waterproof layer, drainage layer, filter membrane growing medium, and the glorious crown of vegetation. And that’s not even getting into the subject of green walls. When the surface treatment is right, masonry is provided extra protection by the plants it hosts.

The green roof concept started out cautiously, with small, short-rooted plants and grasses. Currently, over a hundred species of plants have been found viable for the purpose, and improvements in filtering, coating and barrier technology have made possible the use of shrubs and even trees. When dirt is the growing medium, many favor deciduous plants, because the yearly shedding of their leaves exposes the dark soil which can then absorb the sun’s heat for the building’s use. A properly designed green roof, garnished with some solar cells, can take care of itself by collecting and pumping its own water supply.

In the average city, at least forty percent of the energy consumed goes into the maintenance of its buildings — and a lot of that is spent either heating or cooling the interior so human habitation is possible. Green skins save energy for both those purposes — one report says air conditioning costs can drop 25% and overall electricity demand by 50%, and that’s just considering the inside. Outside, studies indicate that a sufficient number of green roofs can cool down the whole urban area by two or three degrees. When there’s a sweltering heat wave, even a seemingly small increment counts, and it’s been estimated that in Manhattan, for instance, greening just one-fifth of the roofs could accomplish that difference. In fact, if we slide on over to GreenRoofs.org, there’s a page of potential benefits that might astonish even the most ardent environmentalist.

The hard-headed, no-nonsense city of Chicago, which used to be known chiefly as the hog butchery capital, now wears the uncontested laurel wreath for its amazing number of buildings with vegetated roofs. In the last year alone, Chicago planted over 500,000 square feet of greenery over its residents’ heads. The City Hall set the pace, and there’s a lovely page about it here.

Australia was leery of innovation, but in the five years since Michael and Robyn Thomas produced their comprehensive and still very relevant paper for the government’s Standing Committee on Environment and Heritage, an ongoing drought has made believers out of quite a few skeptics. One of the showpieces planned for the green-skin revolution in Oz is the two billion dollar renewal of an entire precinct of Sydney, including two towers designed by Jean Nouvel and Norman Foster.

Callaghan’s article emphazises the ARCOS building in Japan’s Fukuoka City (pictured) which takes the green roof idea a step forward with not one many green roofs, 15 stories of them, like the icing on a tiered wedding cake. More great photos of this startlingly radical office building are here.

The only thing better than a green roof is an accessible green roof. When it’s created not just for energy-efficiency, but for people, it can provide the desired refreshment and even the company of birds and little animals. Sometimes you don’t need to consume the fuel and the time for a day-trip to the country. Half an hour under a tree can renew the spirit wonderfully. Remember the old Carole King/Gerry Goffin song, “Up on the Roof”?

On the roof, it’s peaceful as can be
And there the world below can’t bother me.

SOURCE: “Green skins ” 06/21/08
photo courtesy of tanaka_juuyoh, used under this Creative Commons license

Advertisements
27
Jun
08

BIM Revolution Not Quite Here Yet

An interesting article in The Economist suggests that the revolution in BIM (Building Information Modeling) is, at least for the present, mainly wishful thinking. By and large,

… fancy graphics tend to be used only for conceptual purposes and play no role in the detailed design and construction of the finished structure. For the most part, this is still carried out with old-fashioned two-dimensional elevation and plan drawings, created by hand or using computer-aided design (CAD) software. “It’s still a 2-D profession,” says Shane Burger, an associate architect at Grimshaw…

With CAD, you draw your picture, and the software makes it malleable, so it can be changed, added to, combined with another. With BIM, you put in the facts of the case and tell the software what you need, and it draws the picture. It seems that many practitioners are still in a CAD headspace, unable to make the leap of imagination that would really put BIM to work for them.

When the client says, “How will it look from over there?”, the elegant and stunning pictorial answer can be shown, and that’s cool. But there’s so much more to BIM than dazzling graphics. The amazing virtual walk-through is negligible compared to the real power and beauty of BIM. The thing to keep in mind is that a building information model is a digital representation of both the physicals and functional characteristics.

Traditionally, one of the embarrassing possibilities, once construction starts, is discovering that a basic law of physics is being violated, as two things, such as an air duct and a beam, try to occupy the same space at the same time. In building information modeling, the word “information” is there for a reason – because the best part of BIM is the huge database of everything you could possibly want to know about every part of the building at all times. Like the weather or any other system, a building is subject to the so-called “butterfly effect.” Tweak something over here, and something over there is affected. With BIM,

the model is based on objects, which are solid shapes or voids with their own properties. The model also includes information about the relationships between these objects, so that when one object is changed… any related objects are automatically updated.

In a large project, the number of stakeholders can grow to monstrous proportions, and BIM keeps them all on the same page. Time is an added dimension, so processes can be followed through the life cycle of the building. All the stages of design, construction, and facility management are taken into account and automatically updated. Energy use, lighting, heat flow, acoustics, and many other factors can all be kept track of. The most important thing is the sharing of resources and information across platforms and environments.

The author points out that the early adapters are the more flamboyant, high-name-recognition architects. Because their creations are so complicated and unusual, there’s really no other choice. What’s needed is BIM across the board; it needs to be a plow horse as well as a show pony. Apparently this is happening, as the General Services Administration now requires BIM technology for all the projects it funds.

Of course, accurate cost estimation is a huge incentive, now more than ever. When the digital prototype is the main reference, it’s possible to calculate very finely the quantities of materials needed. Perhaps even more important, every detail necessary for compliance with regulations is spelled out. MIT professor William Mitchell estimates that inconsistencies and clashes can eat up from 2 to 5% of a budget. This is interesting, because that’s about the same percentage range as it costs to make a really good green building. So, thanks to BIM, it seems that a building could be made greener (costing 3% more) and smarter (saving 3%) and still end up with about the same price tag, when all’s said and done. With the cost of energy and materials going up, and the cost of information going down, it looks like the BIM revolution will go forward.

Pictured: the Eden Project, in England. The geodesic domes were BIM-designed.

SOURCE: ” From blueprint to database ” 06/05/08
photo courtesy of just_laze , used under this Creative Commons license

24
Jun
08

The Glavinich Guide to Green Building Requirements

Green Roof in Canada

Among other accomplishments, Thomas E. Glavinich is past president of the Architecture Engineering Institute, associate professor at the University of Kansas (more specifically in the schools of Engineering and of Architecture and Urban Design), and author of a new book from Wiley. In its current issue, ArchitectureWeek excerpts a chapter of this book, Contractor’s Guide to Green Building Construction. Glavinich draws the distinction between green project requirements and green building project requirements, and recommends careful attention to every detail of both, saying:

Green building product requirements are expressed explicitly when the required green product characteristics are included in the product’s respective specification section with other standard product requirements. Implicit green building requirements are usually included in the contract documents by reference.

Explicit requirements should not be hard to find in the building’s specification and drawings, and of course it’s always better to have these things spelled out in a way that guarantees a reduction of the contractor’s risk by expediting the bid process and the accuracy with which bids may be arrived at. Clarity upfront leads to a project where change orders are few or none, and disputes don’t even have a chance to happen.

A responsible contractor will diligently comb every available paragraph of text in order to glean the fullest information on which he is expected to act. As in so many other areas of life, making assumptions is not recommended, since they can lead to a large ration of grief, down the road.

Green building product requirements might be spread around in a lot of different parts of the documentation, and general requirements might be loosely stated as a requirement that the building be certifiable at a certain level of a certain third party system, such as LEED-New Construction 2.2 (from the US Green Building Council), SBTool 07 (from International Initiative for a Sustainable Built Environment), and Green Globes for New Construction (from Green Building Initiative.)

Implicit requirements always include the particular demands of state an local governments, as well as federal agencies and whatever third-party rating system is invoked.

When the green building product requirements have been identified, they need to be broken down into the categories of general, specific, and mixed. A specific product requirement can be told by its descriptive, prescriptive, or performance specifications. The specific product requirements translate into how many tons of what kinds of materials need to be procured.

Of course, all these things must be figured out before the contractor decides which parts of the project he will self-perform and which parts will be let out to subcontractors, and the sooner that is known, the better. Both the contractor and the specialty subcontractors need the most accurate information possible before suppliers are asked for RFQs (requests for quotations.) Getting things right from the earliest possible moment always gives a project the strongest possible foundation on which to build.

Glavinich’s book, Contractor’s Guide to Green Building Construction, covers the broad areas of management, project delivery, documentation and risk reduction; and judging from the sample of his meticulous work presented in this excerpt, he lays out a path through the green building jungle that can be followed easily, and with great benefit to all the concerned parties.

SOURCE: ” Getting Green Products Right ” 06/18/08
photo courtesy of pnwra , used under this Creative Commons license

12
Jun
08

Parking Structures Fit for Kings

Cordova Parkade, Vancouver

In the pages of Newsweek, Matt Vella reports on his quest for the world’s greatest parking structures. The piece is accompanied by a slide show titled “Most Incredible Parking Garages.” They may be the neglected stepchild of the architecture world, but buildings that house cars are an important component of modern urban life, and we’ll be seeing a lot more of them, so they might as well be good. While Vella’s definition is a bit broad, his admiration is sincere:

Few and far between, these wonders are sprinkled around the globe in locations from Paris to Santa Monica. These buildings-green parking garages, innovative automobile dealerships, and futuristic gas stations-form a network of buildings fit for admiration as well as for parking your car.

Santa Monica is mentioned because of the attention-getting Civic Center parking structure, the creation of Moore Ruble Yudell Architects & Planners. Its glass panels add bold color to the seaside community, while concealing the presence of 900 vehicles inside. This innovative facility made history when it gained recognition as the first parking garage to be certified according to the standards of the Leadership in Energy and Environmental Design (LEED) rating program.

Also singled out for praise is the Cordova Parkade in Vancouver, British Columbia, an $28 million edifice with a light well in the middle (pictured), recycled elements from an older building, and a method of cleaning storm water by filtration.

At the Fullerton branch of California State University, the Nutwood Parking Facility stands as an example of the movement toward greenness. Holding more than 2,500 vehicles, it is enveloped on three sides by “living walls” of vines and bamboo which are sustained by the storm water collection system.

Vella also finds much to admire in several automobile showrooms, particularly one in Paris where Citroën shows off its classy cars. Located on the fabulous Champs-Elysées, it had better look good . A Toyota dealership in Australia is impressive too, with its high degree of energy efficiency and its sinuously warped roof. Some compare this building’s profile to a snowdrift, while others think it resembles an interstellar craft that has just landed or is about to take off.

Another fine example of a car dealership to the nth degree is San Francisco’s Mercedes-Benz complex, which is actually four separate structures, including a tall, glass-enclosed atrium and a two-story showroom. In Los Angeles, Helios House is a modernistic gas station which, Vella says,

incorporates energy-efficient lights, a green roof of native plants, and a water-collection system that treats contaminated waste water and redistributes it to irrigate on-site greenery. The station’s unique metallic skin is made of prefabricated, recyclable, stainless-steel panels.

In Stamford, Connecticut, the Royal Bank of Scotland is in the process of constructing what will be the state’s largest green building, which will include a 2,000 car parking structure with an aluminum, faux wood façade.

This seems like a good opportunity to mention something that, while not a garage nor indeed a structure of any kind, is a place to keep cars, and does hold environmental benefit as a high priority. It’s actually the parking lot of a ballpark, US Cellular Field, on the south side of Chicago. Its permeable surface is composed of more than half a million interlocking pavement blocks (made of recycled brick) that absorb water rather than letting it run off into channels. The Environmental Protection Agency and the US Green Building Council are all in favor of the concept, and this thing can soak up 920 gallons of water per minute.

Are there any more innovative parking solutions out there that we should know about?

SOURCE: ” Traffic-Stopping Parking Structures “05/21/08
photo courtesy of SqueakyMarmot , used under this Creative Commons license

10
Jun
08

Awards from American Institute of Architects, San Francisco

In ArchitectureWeek, Brian Libby reports on the awards handed out by the San Francisco chapter of the American Institute of Architects. Of particular interest is the Urban Design category, in which Skidmore, Owings & Merrill (SOM) received a merit award for the immense project known as Beijing Finance Street.

Located in a historic district close to the city center and the Forbidden City, the plan is organized around a Central Park as well as a series of interior courtyards based on the traditional Chinese Hatong neighborhoods that were largely wiped out by past urban renewal but have regained favor as the nation re-embraces its past heritage.

Beijing Finance Street encompasses eight square blocks or 860,000 square meters of office buildings, hotels, and retail stores including a huge glass-roofed shopping mall. There are also more than 300 apartments and numerous small parks. Each of the 18 buildings has three parking levels underneath. It’s a district that never sleeps, but the hotels and housing units are located near the central park to take advantage of the quieter atmosphere there, while office buildings are on the edges.

The firm of Skidmore, Owings & Merrill can do pretty much anything, including the most high-tech projects that clients can dream up. In Architectural Graphic Standards, 11th Edition, we see another example of their work, this time for the Kings County Hospital Center in Brooklyn, New York, with special attention to how they designed the vault for the Diagnostic & Treatment Facility Linear Accelerator (page 667.)

Not all AIA chapters do so, but the San Francisco chapter has a whole category for energy and sustainablilty. The honor awards in that category were captured by the Orinda City Hall (Siegel & Strain Architects), and by the Nueva School Hillside Learning Complex (Leddy Maytum Stacy Architects.) This latter project was also recently named one of the top ten green projects of 2008 by the AIA Committee on the Environment. Additionally, the Lawrence Berkeley National Laboratory’s Molecular Foundry (SmithGroup) won the only merit award in this category.

Four Honor awards for excellence were given. One recipient was the firm Brand + Allen Architects, for 185 Post Street, a restoration project with innovative aspects that worked with the protective laws guarding the early 20th century origins of the historic building. Morphosis and SmithGroup shared credit for the San Francisco Federal Building, whose double skin and tall thin shape help it to overreach the energy code’s requirements. Also recognized for excellence were Stanley Saitowitz/Natoma Architects, for Bridge House, and Fougeron Architecture, for Tehama Grasshopper.

Tehama Grasshopper is a remodeled warehouse located in San Francisco, which has been converted to offices and residences, and it also has received more than one award, having been honored earlier this year by the national AIA for its interior architecture.

Again, unlike some other local chapters, AIA San Francisco has established an awards category for interior architecture, which this year recognized three projects: a temple, a restaurant, and a residence.

Interestingly, there is even an “unbuilt design” category, for which the honoree was IwamotoScott Architecture for Hydro-Net: City of the future, a vision of San Francisco a hundred years from now. Building information modeling (BIM) helped The Design Partnership snag an honor award for the remodel of a University of California pathology lab in which costs and construction time were greatly reduced through use of the BIM technology.

The Panhandle Bandshell (pictured) received an urban design honor award, which just might be the coolest one of the bunch. This functional piece of sculpture is now located at Treasure Island, an artificial island that is part of San Francisco, where students and other low-income residents live. Among other reclaimed components, the bandshell was constructed from 65 automobile hoods and 3,000 plastic water bottles.

SOURCE: “San Francisco AIA Awards 2008″05/28/08
photo courtesy of MikeLove, used under this Creative Commons license

05
Jun
08

Green Warehouses: Corporations Meet Sustainability Challenge

Kraft Foods, according to an announcement from ProLogis (which owns, manages and develops distribution facilities) has built a new distribution center in Morris, Illinois, which holds the distinction of being the largest structure in the world holding a Commercial Interiors certification from the Leadership in Energy and Environmental Design (LEED) program.

The 800,000 square-foot distribution facility was completed last year, and more recently, interior modifications led to the LEED Gold recognition. For Kraft, it’s a first, and certainly worthy of congratulation. The company’s Vice President for logistics, David Klavsons, had this to say:

This is a great accomplishment for our company and provides tremendous momentum for our future sustainability initiatives. We have a longstanding relationship with ProLogis and, by leveraging their expertise in green construction practices, the company has added an even higher value to our partnership.

For ProLogis, this Illinois facility is their third in the United States to receive LEED certification, and they have nine more warehouses currently vying for certification. A ProLogis executive re-affirmed the company’s determination to become the global leader in the construction of sustainable warehouses. Its customers include transportation, manufacturing and retail concerns, as well as third-party logistics providers. From its Denver, Colorado, headquarters, ProLogis controls about 526 million square feet of such facilities altogether, worldwide.

Every day, around 125 trucks approach the warehouse to either bring in or take away Kraft food products, chiefly baked good like chips and cookies. But what makes this warehouse special?

For starters, nearly 100 percent of the construction materials debris (more than 1000 tons) was kept out of the landfill by diverting it to recycling centers, while recycled and locally sourced materials were used as much as possible for the interior remodeling. An energy reduction of 60 percent was achieved in the area of lighting, through use of windows, fluorescent lamps, and motion detectors. Within the heating, ventilation and air conditioning (HVAC) system, energy use was reduced by 40 percent, and only one quarter of the building’s area is air-conditioned. All the paints, adhesives, sealants and coatings used were chosen with an eye to their emission levels of volatile organic compounds (VOC), while carpeting and furniture are made from recycled materials.

Wood and wood-based construction materials came with the blessing of the Forest Stewardship Council (FSC). This is the international organization devoted to best practices for sustainable forestry. The website of the U.S. branch lists the group’s principles, which cover compliance with local law, tenure and use rights, indigenous peoples’ rights, workers’ rights, community relations, environmental impact, management strategy, monitoring and assessment, and much more.

Kraft is not the only corporation concerned with “green” warehouses, of course. Nextgen Vending, purveyor of organic foods and beverages, recently opened a new facility in Boise, Idaho with several advanced features. Eden Foods, which also sells organic edibles, recently broke ground for a facility in Michigan that aims for LEED certification. The Lucky’s Warehouse project in Baltimore is the subject of a well-explained and profusely illustrated case study at Greenline, and many other similar projects are being developed throughout the country.

SOURCE: “Kraft Foods and ProLogis Announce Largest LEED-CI Gold Certification at Chicago-Area Distribution Center” 05/21/08
photo courtesy of tom.arthur , used under this Creative Commons license

03
Jun
08

A High-Performance Building in Texas

UT Nursing

The School of Nursing and Student Community Center at the University of Texas in Houston (pictured) was chosen as an AGS case study for several reasons, according to a very explicit piece by Rives Taylor in Architectural Graphic Standards, 11th Edition. Ambitious high-performance goals were set and met. It began with a holistic approach to design and planning:

These building strategies were developed through a highly defined and premeditated process in a one-year period before design started. A collective team of experts undertook this year of intensive research, seeking the best existing research methods, design, and operational practices to direct the realization of this facility.

One of the greenest things about the School of Nursing is what happened even before the first step toward its creation. The site had previously been occupied by a research building, which was deconstructed so conscientiously that 80% of its materials were reclaimed for recycling and eventual further use.

Building Information Modeling techniques were used to formulate an initial plan, which was then, with the aid of the software, changed and adjusted along the way. BIM helped with the validation of recycled content, the balancing of CO2, and assessment of the buildings life cycle, and in other areas as well. For instance, in the matter of lighting:

The team refined their intuitive ideas using energy and daylight modeling tools with the Lawrence Berkeley National Labs… Actual lighting levels for the alternative design schemes were simulated through a yearly cycle. The measurements were then compared and decisions were made to follow specific strategies based on light quality, quantity, energy performance, costs, and other criteria.

Maximum lighting effectiveness was achieved through a combination of several different solutions including windows, four skylighted atria, sun shading devices, and artificial lighting. Daylighting is characterized here as one of the most simple and powerful strategies, because it doesn’t require a trained operations staff in order to work effectively.

Some recycled materials were used, for instance the multi-layered insulation. All materials were closely scrutinized with an eye to their low volatile organic compound (VOC) content. Once set in place, these of course also continue to perform without further human intervention. For greater energy efficiency, HVAC (heating, ventilation and air conditioning) equipment was installed with a combination of some undersized elements (pumps and fans) and some over-sized ones (ducts and pipes). Ventilation is treated separately from cooling, and a localized instantaneous hot water delivery system is the solution preferred over the traditional central hot water source. The double-paned window glass is spectrally selective.

Five tanks collect rainwater which, combined with condensation from the cooling system, provide greywater for the low-flow toilets and other uses, while potable water is to be found only in drinking fountains, sinks and showers.

The first two floors contain facilities used by the whole student body: bookstore, auditorium, café, and student services offices. The third and fourth floors are dedicated to the academic needs of the nursing school: classrooms and other learning environments. Then there is a research lab floor, topped by three stories containing offices for faculty and administration, and conference rooms. The service building is a separate structure.

The School of Nursing’s four elevations and its roof were conceived as five unique facades, each a distinct entity, and the detail with which Taylor describes the individual design approaches to the conditions and requirements on the various sides, is the highlight of this chapter.

SOURCE: “University of Texas School of Nursing and Student Community Center” AGS page 495 2007
photo courtesy of JoeBehrPalmSprings , used under this Creative Commons license